Instructions For Use
Table Of Contents

Symbols...3
Table Of Contents..3
Buttons and Indicators ..4
System Description..5
 Device Description ..5
 Indications for Use ..5
 Contraindications ...5
Customer Care...6
 Medtronic Xomed, Inc. ..6
 Help Line ..6
 International Service6
Introduction...6
Components ...6
 Front Panel ...6
 Side Panel ..6
 Rear Panel ..6
 NIM 3.0 Patient Interface7
 Stimulator Probes and Handles7
 Monopolar ...7
 Simulator ...7
 Patient Interface and Simulator7
 Simulator Set-up ..8
Annual System Quick Check8
 Power Up Diagnostics8
 Confirming Electrodes9
 Electrode Lead Off ..9
 Stimulation ..9
 Mechanical Stimulation9
 Set and Measure ..10
 Threshold Test ..10
 Simulation Troubleshooting10
Annual System Quick Check Data Sheet11
 Preventive and Corrective Maintenance11
Advanced System Check12
Cleaning and Maintenance12
 Cleaning (after each use)12
 Storage ..12
 Maintenance ..12
Fuses ...13
 Console Fuse Replacement13
 Patient Interface Fuse Replacement14
Troubleshooting ...15
Technical Specifications17
Block Diagram..19

Definitions (used in this manual)

APS™ Automatic Periodic Stimulation.
NIM* Nerve Integrity Monitor.
NIM 3.0 NIM-Neuro® 3.0 or the NIM-Response® 3.0
Event Sequence A sequence is defined as a series of events
 separated from each other by less than one
 second.
Stimulus Rejection Adjustable delay reading EMG after stimulation.
Period In previous versions of the NIM®, this was
 referred to as Stimulus Artifact or Artifact
 Delay.
GUI Graphic User Interface.
DSP Digital Signal Processor.
ABR Auditory Brainstem Response.
SSEP Somatosensory

Symbols

<table>
<thead>
<tr>
<th>SN</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Do not dispose of this product in the unsorted municipal waste stream. Dispose of this product according to local regulations. See http://recycling.Medtronic.Com for instructions on proper disposal of this product.</td>
</tr>
<tr>
<td></td>
<td>Do Not Use If Package Is Open Or Damaged.</td>
</tr>
<tr>
<td></td>
<td>Package Contents</td>
</tr>
<tr>
<td></td>
<td>Use By Date</td>
</tr>
<tr>
<td></td>
<td>Do Not Reuse</td>
</tr>
<tr>
<td></td>
<td>Lot Number</td>
</tr>
<tr>
<td></td>
<td>Fuse</td>
</tr>
<tr>
<td></td>
<td>Accessory</td>
</tr>
<tr>
<td></td>
<td>Catalog Number</td>
</tr>
<tr>
<td></td>
<td>AC Power</td>
</tr>
<tr>
<td></td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>Is Approximately Equal To</td>
</tr>
<tr>
<td></td>
<td>Sterilized By Radiation. Do Not Use If Package Is Open Or Damaged.</td>
</tr>
<tr>
<td></td>
<td>Sterilized By Ethylene Oxide. Do Not Use If Package Is Open Or Damaged.</td>
</tr>
<tr>
<td></td>
<td>Authorized Representative In The European Community.</td>
</tr>
<tr>
<td></td>
<td>This Device Complies With Medical Device Directive 93/42/EEC</td>
</tr>
<tr>
<td></td>
<td>Rx Only Caution: Federal Law (U.S.A.) Restricts This Device To Sale By Or On The Order Of A Physician.</td>
</tr>
<tr>
<td></td>
<td>Quantity</td>
</tr>
<tr>
<td></td>
<td>Manufacturer</td>
</tr>
<tr>
<td></td>
<td>Date Of Manufacture</td>
</tr>
</tbody>
</table>
Buttons and Indicators

In this section all buttons used on the "Touch Screen User Interface" are displayed with an explanation of how they work.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For option selection where choice is limited to one of two or more options.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For option selection where choice is to enable or disable a single or multiple options.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check Boxes: One or both must be selected. Both cannot be deselected.</td>
</tr>
<tr>
<td></td>
<td>Indicates a failed test.</td>
</tr>
<tr>
<td></td>
<td>Indicates a successfully passed test.</td>
</tr>
<tr>
<td></td>
<td>Indicates an Active Channel.</td>
</tr>
<tr>
<td></td>
<td>Option Button See associated text indicating option.</td>
</tr>
<tr>
<td></td>
<td>Opens Help Screen for Electrode Placement & Sound Samples</td>
</tr>
<tr>
<td></td>
<td>Increases value/Setting</td>
</tr>
<tr>
<td></td>
<td>Decreases value/Setting</td>
</tr>
<tr>
<td></td>
<td>Opens Monitoring Screen</td>
</tr>
<tr>
<td></td>
<td>To view details of the event waveform.</td>
</tr>
<tr>
<td></td>
<td>Opens Audio, Monitoring, Stimulation, Microscope, and APS™ Panels.</td>
</tr>
<tr>
<td></td>
<td>Opens panel for adjusting amplitude and time scales.</td>
</tr>
<tr>
<td></td>
<td>Sends selected information to USB mass storage device.</td>
</tr>
<tr>
<td></td>
<td>Used in Reports Section to print reports</td>
</tr>
<tr>
<td></td>
<td>Freezes entire screen (all channels)</td>
</tr>
<tr>
<td></td>
<td>Saves current screen to memory or to selected peripheral device.</td>
</tr>
<tr>
<td></td>
<td>Activates STIM 2 stimulus adjustment buttons.</td>
</tr>
<tr>
<td></td>
<td>Initiates an APS™ baseline acquisition sequence</td>
</tr>
<tr>
<td></td>
<td>Opens Electrode Status Panel</td>
</tr>
<tr>
<td></td>
<td>Closes "Delete Procedure" dialog box</td>
</tr>
<tr>
<td></td>
<td>Global Settings allows the user to select screen language, date/time format and the Diagnostic Mode, as well as set system date/time and Restore Factory Defaults</td>
</tr>
</tbody>
</table>
| ![Information Button](image) | Opens Information Screen to enter:
 - Surgeon's Name
 - Patient's Name
 - Notes
 - Fast Rate Button: Selects APS™ Pulse Fast Rate |
| ![Normal Rate Button](image) | Selects APS™ Pulse Normal Rate |
| ![Next Button](image) | Opens the next screen or graphic display |
System Description

Device Description

The NIM-Neuro™ 3.0 is an eight-channel EMG monitor for intraoperative use during surgeries where a nerve is at risk due to unintentional manipulation. The NIM 3.0 System records electromyographic (EMG) activity from muscles innervated by the affected nerve. The monitor will assist early nerve identification by providing the surgeon a tool to help locate and identify the particular nerve at risk within the surgical field. It will continuously monitor EMG activity from the muscles innervated by the nerve at risk to minimize trauma by alerting the surgeon when a particular nerve has been activated. The monitor utilizes touch screen and color graphic user interface (GUI) along with the audio feedback to increase the usability of the device.

Indications for Use

The NIM 3.0 is intended for locating and identifying cranial and peripheral motor and mixed motor-sensory nerves during surgery, including spinal cord and spinal nerve roots. The APS™ electrode is an accessory intended for providing automatic periodic stimulation to nerves when used with the Medtronic Nerve Monitoring Systems. Indications for NIM 3.0 EMG Monitoring Procedures include: Intracranial, Extracranial, Intratemporal, Extratemporal, Neck Dissections, Thoracic Surgeries, and Upper and Lower Extremities.

Contraindications

The NIM 3.0 is contraindicated for use with paralyzing anesthetic agents that will significantly reduce, if not completely eliminate, EMG responses to direct or passive nerve stimulation.
Components

Customer Care

Medtronic Xomed, Inc.
6743 Southpoint Drive North
Jacksonville, FL 32216 USA
www.medtronicENT.com

Help Line
(800)-874-5797

International Service
International customers should contact their local Medtronic Xomed office.

Introduction

The NIM 3.0 System is intended for intraoperative use during surgeries in which a motor nerve is at risk due to unintentional manipulation. The system records electromyographic (EMG) activity from muscles innervated by the affected nerve. If you are experiencing problems with the NIM 3.0 System, we recommend returning the unit to Medtronic Xomed for repair and integrity testing. Some of the diagnostic testing can be performed by the Biomedical Technician using general lab equipment and the components provided in this package.

Note: Biomedical technician(s) performing the verification Test Procedure shall be fully familiar with functions, operations, warnings and components of the entire system.

Components

Front Panel

- A. STIM 1 stimulus adjustment.
- B. STIM 2 stimulus adjustment.
- C. Volume adjustment.
- D. The Speaker provides audio alarms, acoustic EMG monitoring, and voice prompts.
- E. Product name.
- F. Touchscreen – The Touch Screen displays EMG waveforms and controls many of the functions of the NIM.

Side Panel

- A. USB Out: The USB Out is an industry standard USB type connector that can be used with mass storage devices.
- B. Anti-Glare Stand: This device is used to change the viewing angle of the NIM 3.0 screen. It is shown in the tilted (up) position.

Rear Panel

- A. Accessory Power Outlet: The Accessory Power Outlet used with the approved NIM 3.0 Accessories (i.e. the approved printer power supply only).
- B. Fuse Access: The AC power fuses are located on the back of the units.
- C. Power Switch: The power switch turns the power ON or OFF.
- D. Power Connector: The power cord plugs into the back of the NIM 3.0 System console. The input fuses and accessory output is in the power entry module. Plug the power cord into the A/C power outlet.
- E. Equipotential: Uniform potential.
- F. For future use.
- G. USB Out: The USB Out is an industry standard USB type connector (two port) that can be used with mass storage devices/printer/keyboard.
- I. Surgeon Mini Screen Port: Output connection to Surgeon Mini Screen or ad.
- J. Muting Detector Input: Near-field radio frequency detector.
- K. Patient Interface Connector: The patient interface connector is a 25-pin D-sub.
- L. Handswitch APS™ only.
M. RCR Audio Jack: An RCA audio jack is provided to output an audio signal that can be overlaid onto a video signal when using industry standard recording devices. The output will be audio line level (1 Vp-p).
N. Mini Jack: Standard configuration is for private listening through Stereo Headphones.
O. Carry Handle for transporting unit.
P. Anti-Glare Stand: This device is used to change the viewing angle of the NIM screen, it is shown in the tilted up position.

NIM 3.0 Patient Interface
The NIM 3.0 Patient Interface and cable are the link between the NIM 3.0 and the Patient. The patient interface has eight, four, or two (dependent upon model) color coded pairs of electrode inputs, a ground connection, a stimulus return connection, and stimulator outputs that are configured to accept monopolar or bipolar stimulating probes.

Stimulator Probes and Handles
The Stimulator Probes and Handles carry stimulus current from the console, via the Patient Interface, to the patient.

Monopolar

Ball Tip Probe

A. Stimulus to Patient Contact Area
B. Insulated Sleeve
C. Probe Base

Standard Prass Flush Tip Probe

A. Stimulus to Patient Contact Area
B. Insulated Sleeve
C. Probe Base

Incrementing Monopolar Probe Handle
The Incrementing Probe provides the ability to adjust the stimulus, and to print or save events from within the surgical site.

A. Probe Jack
B. Toggle Button
C. Stimulus Plug
D. Toggle Button Control Plug

Universal Monopolar Probe Handle

A. Probe Jack
B. Handle
C. Stimulus Plug

Simulator
The Medtronic Xomed NIM 3.0 Universal Patient Simulator provides for testing some of the features of the NIM 3.0 system without the need for patient interaction. In addition, the NIM 3.0 Universal Patient Simulator is a convenient means of testing various aspects of instrument operability prior to patient application.

This section describes the NIM 3.0 Patient Simulator and pertinent components of the NIM 3.0 system used during a test.

On the NIM 3.0 Universal Patient Simulator, there are 8 channel stimulation contact pads, one (1) for each channel. These contacts are the points for activating individual circuits. A monopolar probe is recommended for use during testing.

Patient Interface and Simulator

Simulator use requires prior setup of the NIM 3.0 unit see User’s Guide if needed.

A. Positive electrode jacks. (Patient Interface Cable Adapter 11685633)
B. Negative electrode jacks. (Patient Interface Cable Adapter 11685633)
C. Stimulator STIM 1 jack.
D. Incrementing Probe control jack.
E. Stimulus return jack.
F. Electrode ground. (Patient Interface Cable Adapter 11685633)
G. Auxiliary stimulator STIM 2 or APS™ jack.

Note: APS™ Stimulating Electrode cannot be used with the Simulator.

H. Simulated positive electrodes for connection to the Patient Interface.
I. Simulated negative electrodes for connection to the Patient Interface.
J. Simulated electrode ground plug for connection to the Patient Interface.
K. Simulated stimulus return plug for connection to the Patient Interface.
L. Simulated patient with inserted electrodes (pads).
M. Monopolar Probe for stimulating patient electrode pads (Simulated Events).
N. Stimulus plugs for connection to the Patient Interface.
Annual System Quick Check

O. Toggle button control plug for connection to the Patient Interface.

P. NIM-Response® 3.0 Patient Interfaces is shown for reference only, connections are the same.

Incrementing Probe Stimulus Adjustment

The (single use) Incrementing Probe provides the surgeon with the means to adjust the stimulation current at the surgical site.

Note: If the incrementing probe handle malfunctions, immediately disconnect the Toggle Button Control Plug from the Incrementing Probe Control jack from the Patient Interface and use console touch screen buttons to adjust stimulus current.

Simulator Set-up:

1. Connect all channel jumper cables (simulated subdermal electrodes), ground, and STIM 1 return (STIM 1 return can also be used as the STIM 2 return) from the simulator to the corresponding patient interface. See Wiring Table.

2. Connect a monopolar probe with, Universal handle or Incrementing Probe handle, to the STIM 1 negative (black) jack on the patient interface.

3. Connect Patient Interface to the NIM 3.0.

Annual System Quick Check

Power Up Diagnostics

1. Turn console power On.

2. Verify alert (beeping) sounds for approximately 5 seconds at power up.

3. At Splash screen, an internal integrity check is automatically performed each time the system is turned On. You see a series of messages on the display screen. The integrity consist of:

 • DSP Test:
 - Verifies DSP is running and tests the communication between DSP and SBC.
 • Audio Board Tests:
 - Headphone/Handscho switch functionality test
 - Audio/MuteProbe functionality test
 • Main Board Tests:
 - Channel 1 functionality test
 - Channel 2 functionality test
 - Channel 3 functionality test
 - Channel 4 functionality test
 - Channel 5 functionality test
 - Channel 6 functionality test
 - Channel 7 functionality test
 - Channel 8 functionality test
 • Knob Board Tests:
 - The knob board self test verifies communication between the board and SBC.
 • Touch Screen Test:
 - Induces key presses and verifies SBC detects them correctly.
 • Sound File Download:
 - Audio files (EFIGS) as selected by user.

4. At Program Loading indicator, verify audible three-tone alarm (Bleedle-deet), hereafter refer to as “Bleedle” alarm tone.

<table>
<thead>
<tr>
<th>Wiring Table</th>
<th>Patient Simulator to Patient Interface</th>
<th>NIM-Response® 3.0</th>
<th>NIM-Neuro® 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Wire</td>
<td>Ch. #</td>
<td>Connects To</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue</td>
<td>1</td>
<td>Positive</td>
</tr>
<tr>
<td>Blue</td>
<td>Black</td>
<td>1</td>
<td>Negative</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>2</td>
<td>Positive</td>
</tr>
<tr>
<td>Red</td>
<td>Black</td>
<td>2</td>
<td>Negative</td>
</tr>
<tr>
<td>Purple</td>
<td>Purple</td>
<td>3</td>
<td>Positive</td>
</tr>
<tr>
<td>Purple</td>
<td>Black</td>
<td>3</td>
<td>Negative</td>
</tr>
<tr>
<td>Orange</td>
<td>Orange</td>
<td>4</td>
<td>Positive</td>
</tr>
<tr>
<td>Orange</td>
<td>Black</td>
<td>4</td>
<td>Negative</td>
</tr>
<tr>
<td>Gray</td>
<td>Gray</td>
<td>5</td>
<td>Positive</td>
</tr>
<tr>
<td>Gray</td>
<td>Black</td>
<td>5</td>
<td>Negative</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
<td>6</td>
<td>Positive</td>
</tr>
<tr>
<td>Yellow</td>
<td>Black</td>
<td>6</td>
<td>Negative</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown</td>
<td>7</td>
<td>Positive</td>
</tr>
<tr>
<td>Brown</td>
<td>Black</td>
<td>7</td>
<td>Negative</td>
</tr>
<tr>
<td>Tan</td>
<td>Tan</td>
<td>8</td>
<td>Positive</td>
</tr>
<tr>
<td>Tan</td>
<td>Black</td>
<td>8</td>
<td>Negative</td>
</tr>
<tr>
<td>Red</td>
<td>White</td>
<td>N/A</td>
<td>STIM 1 / 2</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>N/A</td>
<td>Ground</td>
</tr>
</tbody>
</table>
5. The next screen to open will be Set-up, Select Procedure, Step 1 of 2 unless a problem was found with the system during the internal integrity check. In which case the NIM 3.0 stopped the internal integrity check at the failure. No monitoring shall take place.
6. If Set-up Step 1 of 2 opened check off “System Set-up” in the Annual System Quick Check Data Sheet.
7. Optional: Operator may enter/change Date, Time, Language, or Data Fields via Global Setting button.
8. Select Procedure
Set-up, Select Procedure, Step 1 of 2 is the default screen, requiring the operator to select an existing procedure or begin a new (custom) procedure. Any procedure (using all channels) may be used. For this procedure we will assume that the operator has setup a Custom Procedure (see System Set-up/Custom Set-up in the User’s Guide for instructions) called “Simulation Test” and named the channels Ch 1 Ch 2 etc.

Confirming Electrodes
This check confirms that all electrode circuits are connected and functioning properly.
1. The Patient Interface and Simulator should have been connected before powering up. If they were not, then connect them now.
2. Select Custom Procedure/Simulation Test.
3. The next screen to open will be Set-up Step 2 of 2.
4. If the Check Electrode Panel is closed press the Check Electrode Tab if open proceed to step 7.
5. Press the Show Details button.
6. Electrodes screen opens. At this display confirm:
 - All channels are on.
 - All channels have Subdermal selected.
 - Positive and negative kΩ (impedance) of all 8 or 4 channels is 5.1 kΩ or 5.6 kΩ ±1.0 kΩ.
 - The Δ (difference) in their values is 500 Ω ± 500 Ω.
 - The kΩ (impedance) of the Ground is 6.5 kΩ ± 1.0 kΩ.
 - The kΩ (impedance) of the Stimulus Return is 6.2 kΩ ± 1.0 kΩ.
 - Warning “Monitoring is Disabled” is on and flashing.
7. Check off “Confirming Electrodes” in the Annual System Quick Check Data Sheet.
 Note: If any of these conditions are different check your set-up, if still incorrect contact Customer Care.

Electrode Lead Off
This test simulates what happens when contact with an electrode is lost.
1. Starting at the Monitoring Screen (all adjustments are at default values):
 I. Disconnect the positive lead from Channel 1.
 II. For three seconds:
 - Channel 1 shows a background noise waveform.
 - “Artifact Detected” is displayed on the zero (0) amplitude line in yellow.
 - There is a continuous noise. This is due to ambient electronic noise being picked up by the disconnected electrode.
 III. After 3 seconds the alarm stops and “Electrode Off” is displayed on the zero (0) amplitude line in yellow with the background noise waveform.
2. Reconnect the electrode and confirm the NIM 3.0 returned to normal operation.
3. Repeat test for all channels.
4. Check off “Electrode Lead Off” in the Annual System Quick Check Data Sheet.
 Note: If any of these conditions are different check your set-up, if still incorrect contact Customer Care.

Stimulation
Mechanical Stimulation
The positive and negative patient stimulator electrode cables are sensitive to touch (mechanical stimulation) and will generate EMG visual tone responses when manipulated (tapped). These simulated responses appear as spontaneous burst-like responses.
1. Start at the Monitoring screen with default settings, with all electrodes connected.
 Note: Detect Artifacts check box (Advanced Settings button/ Monitoring tab) should by default be selected (On), if not turn it On (select).
2. Gently tap the electrode connectors.
3. Observe:
 - You should hear single beep as each channel is tapped.
 - Alarm tones are lowest for channel 1 and highest for channel 8.
 - You should see sharp (spike like) waveforms on the screen with the words “Artifact Detected” displayed in association to the waveform.
 - Tapping multiple cables will produce multiple alarms and waveforms.
Annual System Quick Check

<table>
<thead>
<tr>
<th>Un-Stimulated (mechanical) Event</th>
<th>Stimulated (patient simulator) Event</th>
<th>Stimulated Event</th>
</tr>
</thead>
</table>

4. Check off “Mechanical Stimulation” in the Annual System Quick Check Data Sheet.

Set and Measure

1. Start at the Monitor screen (default settings) with all electrodes connected using a monopolar probe with universal handle or incrementing probe handle, with Prass tip.

2. Check stimulus adjustment buttons.
 I. The upper left of the screen should read 0.8 (this is the mA setting).
 II. Below the mA setting is a small window reading 0.00 mA. This is the measured value.
 III. Press the Minus and Plus buttons observing that the mA setting changes values.
 IV. Press the mA + button until reaching a value of 3.00 mA.
 • A dialog box will open:
 - Stimulus in excess of 3 milliamperes
 - Press OK to allow stimulus
 - Press OK

3. Touch and hold the stimulating probe to channel 1 of the Patient Simulator and Observe:
 • Stimulus waveform on channel 1 (see Example Stimulus and Spike Waveforms).
 • Stimulus tone sounds (steady repeating beep).
 • Raw EMG can be heard (a popping sound accompanying the stimulus tone).
 • mA Measured is ± 5% of the mA setting.
 • The μV reading is displayed to the right and above the zero (0) amplitude line in yellow and boxed.

4. Repeat test for all channels.

5. Set mA button to 1.00 mA and Event Threshold to 100 μV.

6. Stimulate channel 1 and observe that stimulus tone sounds (repeating beep) and raw EMG can be heard (a popping sound accompanying the stimulus tone).

7. Increase the Event Threshold to 500 μV and stimulate channel 1 and observe:
 • Stimulus waveform on channel 1.
 • Stimulus tone is NOT heard.
 • Raw EMG can be heard (a popping sound).
 • mA Measured is ± 5% of the mA setting.
 • The μV reading is displayed to the right and above the zero (0) amplitude line in yellow and boxed.

8. Repeat for remaining channels.

9. Move the Stimulator and STIM 1 Return to STIM 2 and repeat steps 2, 3, and 7 using any channel.

10. If a Remote (Incrementing Probe) is available check the stimulus adjustment as shown in the B2, B3 and B4 illustration. (If all 8 channels have been tested it is acceptable to test the remote probe on any one channel).
 B1 Toggle button normal or at rest.
 B2 Increase current.
 B3 Decrease current.
 B4 Press and hold saves current screen to memory or to selected peripheral device (Printer or USB flash drive).

11. Check off EMG “Stimulating and Tones” in the Annual System Quick Check Data Sheet.

Note: If any of these condition are different check your set-up, if still incorrect contact Customer Care.

Threshold Test

1. Decrease Event Threshold to 20 μV.

2. Press the channel 1 electrode wire with finger. At this point, the monitor will be picking up electronic noise higher that the threshold setting causing multiple event tones to sound.

3. Turn On (select) Auto Threshold Check Box.

4. Press the channel 1 electrode wire with finger and observe:
 • continuous event alarms sounding for 10 seconds
 • after 10 seconds, Threshold Increase is announced
 • event tones no longer sound
 • the new threshold value is displayed next to the channel number.

 Note: Auto Thresholds maximum is 400 μV. Holding a channel electrode wire between thumb and forefinger or pressing the wire to hard can generate signals greater than the maximum. In this case the threshold will increase to 400 μV but alarms will continue to sound.

5. Repeat for remaining channels.

6. Check off EMG “Threshold Increase Test” in the Annual System Quick Check Data Sheet.

Note: If any of these condition are different check your set-up, if still incorrect contact Customer Care.

Simulation Troubleshooting

Should you encounter any difficulty eliciting simulated responses from the NIM® 3.0 System Patient Simulator, check the following:

- Verify that Stimulus Measured is approximately the same as Stimulus Intensity.
- Make sure the jumper cables are connected correspondingly between the SIMULATOR and PATIENT INTERFACE.
- Adjust the EVENT THRESHOLD setting on the NIM-Neuro® 3.0 System.
- Adjust the STIMULUS intensity on the NIM-Neuro® 3.0 System for adequate output.
- Clean the stimulator contacts of debris.
- Check the integrity of the stimulator or stimulus-dissection instrument and its connecting cable.
- Check for blown fuse in NIM-Neuro® 3.0 System Patient Interface and replace with proper valued fuse (shown near fuse box).
- Check for proper closure of fuse holder in the NIM-Neuro® 3.0 System Patient Interface.

Annual System Quick Check Data Sheet

Preventive and Corrective Maintenance

User maintenance for the NIM 3.0 is limited to visual inspection before use and periodic cleaning. Annual “System Quick Check” with Simulator and System Safety Checks according to IEC/EN60601-1 is recommended. Please see Warning W14 in the User’s Guide.

Model # ____________ S/N _____________________ Tester _________________________ Date _______________

A. System Quick Check with Simulator (A. a - f) ________(✓)
 Use Patient Simulator to confirm appropriate behavior.
 Refer to the Patient Simulator Appendix C to confirm the following:
 a. System Setup ________(✓)
 b. Confirming Electrodes ________
 c. Electrode Lead Off ________
 d. Mechanical Stimulation ________
 e. EMG Stimulating and Tones ________
 f. Threshold Increase Test ________

System Safety Check according to IEC/EN60601-1 Medtronic Xomed recommends System Safety Checks to be scheduled at yearly intervals.

IEC/EN60601-1 Safety Analysis

In accordance with local procedures, perform a complete Safety Analysis for a Class 1, Type BF Device on the NIM® Console.

Utilize “Ground” connector found on rear of console as Chassis ground.

For Patient Leakage and Mains on Applied Parts tests, a Patient Interface must be attached to the NIM® Console with electrodes connected to each channel.

Ensure Ground Impedance is less than 0.252 Ωs when measured with a 25 Amp source. Record in (a) below.

1. High Potential (Hi-Pot) Testing (A.1.a - c) ________(✓)
 In accordance with local procedures, perform the following Hi-Pot tests on the NIM® Console.
 Note: Perform Test at voltages indicated and record values in space as needed.
 a. Safety ground to Line/Neutral ________
 b. Applied Parts to line/neutral ________

Precaution: Use DC voltage only when performing Applied Parts Hi-Pot test. AC Hi-Pot voltage to Applied Parts will damage the device.

<table>
<thead>
<tr>
<th>System Safety Check</th>
<th>Manufacturers Specifications</th>
<th>Recorded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Ground impedance</td>
<td><0.252Ω @ 25 Amps</td>
<td></td>
</tr>
<tr>
<td>b. Safety ground to Line/Neutral</td>
<td><5.0 mA @ 1500 Vac</td>
<td></td>
</tr>
<tr>
<td>c. Applied Parts to line/neutral</td>
<td><1.0 mA @ 3535 Vdc</td>
<td></td>
</tr>
</tbody>
</table>

Perform an operational check using the Patient Simulator and the Patient Interface. Please see the NIM 3.0 and Patient Simulator User Guides for details.
Cleaning and Maintenance

Advanced System Check

Advanced System Check requires the use of the Biomedical Test Kit sold separately.

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Patient Interface Simulator Plug, P/N 66161714, 1Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banana Plug/Jack Adapter, 1 kilo-ohms Resistor, P/N 11320038, 1Each</td>
</tr>
<tr>
<td></td>
<td>Dual Banana Plug/Phone Cable, P/N 11249172, 1Each</td>
</tr>
<tr>
<td></td>
<td>Patient Interface Ground Cable, P/N 11249170, 1Each</td>
</tr>
<tr>
<td></td>
<td>Patient Interface Cable Adapter, P/N 11685633, 1Each</td>
</tr>
<tr>
<td></td>
<td>Attenuator, 100:1, BNC F/M, P/N 11191901, 1Each</td>
</tr>
<tr>
<td></td>
<td>Attenuator, 20 Db, BNC F/M, P/N 11191900, 1Each</td>
</tr>
<tr>
<td></td>
<td>1 kilo-ohms Resistor Cable Assembly P/N 11681740, 1Each</td>
</tr>
<tr>
<td></td>
<td>10 kilo-ohms Resistor Cable Assembly, P/N 11681741, 1Each</td>
</tr>
<tr>
<td></td>
<td>22 kilo-ohms Resistor Cable Assembly, P/N 11681742, 1Each</td>
</tr>
</tbody>
</table>

The following items are not provided with the Biomedical Test Kit, but are required to perform the test:

- NIM® 3.0 System and system components.
- NIM® 3.0 Printer (Optional).
- USB Keyboard.
- USB Drive.
- Tektronix TDS 360 Oscilloscope or equivalent.
- BNC-BNC Cables of various lengths.
- BNC Female/Male/Female Connector
- (T-Connector) (Optional).

Note: Estimated time to perform testing with all components is 4 - 6 hours.

Cleaning and Maintenance

Cleaning (after each use)
The patient simulator, patient interface and cable, Muting Detector and cable(s), printer, printer cable, power cords, headphones, USB compact flash, and the NIM-Neuro® 3.0 System monitor

- Disconnect all cabling from rear of the monitor.
- DO NOT immerse or sterilize the units.
- Wipe down the units with a cloth dampened with a neutral enzymatic detergent, pH 6.0-8.0 or phenol based disinfectant.
- Do not use alcohol, other solvents, or abrasive cleaners.
- Dry the units with a clean, non-abrasive cloth.

Storage
Allow the NIM 3.0 System and accessories to thoroughly air-dry before storing in a cool dry place. See Technical Specifications for further information.

Maintenance
Medtronic Xomed is committed to provide the highest standard of workmanship in manufacturing its products. Your NIM 3.0 System requires minimal maintenance and calibration. However, Medtronic Xomed recommends preventative maintenance and screen calibration scheduled at yearly intervals. Comprehensive testing and calibration should be performed by returning the entire system, including the patient interface and Muting Detector to Medtronic Xomed Customer Care. Contact them directly for details of how to return your product.
Fuses

Console Fuse Replacement

The console AC power is fuse protected. Have a Biomedical Engineer check the fuse if a problem is suspected. It is very important that the correct replacement fuse is used (5 x 20 mm, 2.5 Amp, time-lag, Low breaking capacity, Xomed Fuse Kit # 8253070).
Patient Interface Fuse Replacement

The Patient Interface has its own fuse. It is very important that the correct fuse is used – It must be Xomed Fuse Kit # 8253075 (similar 32 mA Type F 250V 5 x 20 mm fuses may not offer the same degree of protection).
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No visual display or audio alarms at power-up.</td>
<td>Power cord not connected to outlet or to the NIM 3.0 system. Power switch not turned on.</td>
<td>Plug in power cord. Turn power switch on.</td>
</tr>
<tr>
<td>Electrode impedance too high.</td>
<td>Electrode dislodged from patient, but not completely out. High resistance in electrode. Electrode pin not firmly inserted into patient interface.</td>
<td>Insert dislodged electrode; tape down in place. Remove and replace with new electrode. Check connection at Patient Interface box.</td>
</tr>
<tr>
<td>Electrode impedance ≤ 0.1 KΩ</td>
<td>Positive and negative electrodes touching below surface of skin. Extremely low impedance, particularly in EMG tubes.</td>
<td>Remove and relocate electrodes. Use "tap test" near electrodes to evoke EMG or artifact (increase threshold, decrease volume for test). If activity is noted on channel in question, proceed.</td>
</tr>
<tr>
<td>Electrode reading is: (+ or -) Off or Δ = = = =</td>
<td>Electrode laying on skin surface. Electrode placement insecure. Dirty electrode tip. Electrode cable is broken. Electrode pin disconnected from patient interface.</td>
<td>Re-insert electrode in question. Remove and replace electrode in question. Check connection to Patient Interface box.</td>
</tr>
<tr>
<td>Electrode difference is greater than 2KΩ (Subdermal electrodes) or 10KΩ (Prass Paired electrodes).</td>
<td>Dirty electrode. Mismatched pair. Unequal placement.</td>
<td>Remove and replace electrode for appropriate channel with highest impedance reading first. Remove and replace electrode in question. Check connection to Patient Interface box.</td>
</tr>
<tr>
<td>Interference on anesthesia equipment (EKG Monitor).</td>
<td>Measuring current on NIM EMG Electrodes. Electrode Check (Electrode Screen selected). Muting function active. With Stimulator active.</td>
<td>Try an alternate EKG Lead set. Deselect Electrode Screen. See Excessive Muting (Symptom Column). Turn the NIM® Stimulator to 0.0 mA when not needed.</td>
</tr>
<tr>
<td>Incrementing Probe will not adjust stimulation.</td>
<td>Loose connector.</td>
<td>Check connector is properly aligned and fully seated (See System Set-Up / Patient Interface Set-Up).</td>
</tr>
<tr>
<td>Stimulus keeps changing (run away).</td>
<td>Bad Incrementing Probe.</td>
<td>Replace Incrementing Probe or disconnect STIM CONTROL connector and manually adjust stimulus at touch screen.</td>
</tr>
<tr>
<td>Electrosurgical interference.</td>
<td>Muting Detector Probe not connected. Muting Detector Probe input insufficient. Electrical grounding inadequate. Source of interference unidentified. NIM 3.0 system or Patient Interface cable too close to electrosurgical unit or its cables.</td>
<td>Check Muting Detector Probe connections. Loop the unit cable through muting detector. Check electrosurgical grounding pad on patient. Maintain separation between electrosurgical cable and the NIM® system. For less coupling, coil up the Muting Detector Probe next to the NIM 3.0 system.</td>
</tr>
<tr>
<td>Excessive Muting.</td>
<td>Unit receiving excessive signal into the Muting Detector Probe or electrode leads.</td>
<td>Disconnect the muting detector completely.</td>
</tr>
<tr>
<td>Rhythmic Artifact.</td>
<td>Pacemakers – Pace Pulse.</td>
<td>Relocate electrode ground and stimulus return to patients shoulder (Acromion).</td>
</tr>
<tr>
<td>Inadequate muting.</td>
<td>Signal from electrosurgical unit inadequate to cause muting. Inadequate stimulus intensity. Paralyzing anesthetic in use.</td>
<td>Loop the electrosurgical unit cable and clip the muting detector over the doubled cable. Increase stimulus intensity. Eliminate paralyzing anesthetic.</td>
</tr>
<tr>
<td>No response to direct stimulation.</td>
<td>White Stimulation (+) electrode has fallen out or is not connected. Probe (electrode) not connected.</td>
<td>Check that Stimulus Measure is approximately the same value as the Stimulus setting. Re-insert electrode in question. Check stimulator anode (+) and cathode (-) connections.</td>
</tr>
<tr>
<td>Probe (electrode) not connected.</td>
<td>Check stimulus tip to nerve for at least 1 second.</td>
<td></td>
</tr>
<tr>
<td>Patient safety fuse blown. STIM 1 (EMG) Patient Interface fuse REF 8253075.</td>
<td>Check fuse in STIM 1 (EMG) Patient Interface Replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>Not holding probe on nerve long enough.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerve not contacted.</td>
<td>Check stimulator tip for obstruction. Replace if necessary. Check location of stimulation.</td>
<td></td>
</tr>
<tr>
<td>Volume control too low. Event threshold set too high.</td>
<td>Check and correct all settings volume, event threshold, stimulus intensity.</td>
<td></td>
</tr>
<tr>
<td>Excessive current shunting in surgical field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No electrodes in innervated muscle tissue. Nerve not stumbled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place channel electrodes in muscle to be monitored. Check EMG tube placement if applicable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

| Unexpected responses when not directly stimulating nerve. | Unexplained continuous "train' EMG response. | Identify and eliminate possible source of "train" stimulation:
Cold irrigation.
Laser heat.
Retraction on nerve or muscles being recorded.
Patient waking from anesthesia.
Nerve drying.
Ultrasonic aspirator. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve or monitoring area being stimulated or manipulated by thermal or mechanical means.</td>
<td>Identify and eliminate source of inadvertent manipulation.</td>
<td></td>
</tr>
<tr>
<td>Metal-to-metal discharge artifact.</td>
<td>Determine response type from waveform pattern on 50 ms screen.</td>
<td></td>
</tr>
<tr>
<td>Intertwined recording electrode and stimulator wires.</td>
<td>Disentangle recording electrode and stimulator cables.</td>
<td></td>
</tr>
<tr>
<td>Inadvertent manipulation of electrode wires, Patient Interface cable, or recording area on patient.</td>
<td>Check area near recording electrodes for excessive stretching from tape, drapes, etc.</td>
<td></td>
</tr>
</tbody>
</table>
| Electrical interference from other equipment. | Check for intermittent stimulation from anesthesiologist (i.e., hand-held electrical stimulator).
Move NIM 3.0 system away from source of interference.
Make sure Patient Interface cable and electrode wires do not cross other electrical equipment or cables. | |
Technical Specifications

Physical Dimensions
Size: 30 cm W x 33 cm H x 27 cm D
Weight: 6.8 Kg

Operational Environment
Operating Temperature range: 10 to 40 °C (Operating)
Humidity: 30-70% RH non-condensing
Atmospheric Pressure range: 700 kPa to 1060 kPa
Mode of Operation: Continuous duty

Transport and Storage Environment
Shock and Vibration
Verified to Standard ISTA 2A
- 40 °C to + 70 °C
10 % to 100 %, including condensation
500 kPa to 1060 kPa

Amplifier
NIM-Response® 3.0 Ch. 1-4 NIM-Neuro® 3.0 1-8
Individually and simultaneously selectable.
Input Sensitivities: 5 – 10,000 µV peak-to-peak AC-coupled
Automatically zeroed
Bandpass: 15 Hz - 1.85 kHz (± 3 db @ 500 Hz) EMG Display 200 Hz - 1.0 kHz (-6, +3 db @ 500 Hz) Audio EMG Speaker
Input Noise: 3-14 mV p-p, < 5 uV RMS @ DC - 4 Hz, inputs shorted
DC offset Rejection: > 10 Meg Ohm
Common Mode Rejection: ± 1.00 VDC Rejection
3-14 mV p-p, < 5 uV RMS @ DC - 4 Hz, inputs shorted
Channel Enable/Disable Controls: Dedicated function touch pads for independent Ch. enable/disable.
Event Threshold Control and Display:
Adjustable Graduated Touch Bar with Voltage threshold displayed. 0.1-2000Vrms 60Hz < 100 µA

Impedance Measurement
Control:
Measuring Signal:
Measurement Range:
Artifact Detection and Rejection
Stimulus Artifact:
Synchronous and adjustable muting.
Bipolar Electrocautery Rejection:
Continuous Monitoring During Bipolar Cautery < 40 watts
Electrocautery (ESU) Interference:
Automatic detection, and muting.
Muting Detector Input ESU Sensitivity:
ESU Cut / Coag Contact 5 - 100 Watts Air-Discharge 10-100 Watts Muting (0.6 - 2.0 Volts Vrms) Non-Muting (<0.3 Volts Vrms)
Muting Detector Input ESU Immunity:
ESU < 100 Watts Cut / Coag or (<3.0 Vrms 100-800 KHz Sq. Wave) Automatic detection, muting and warning.

Display / Touch Screen
Type:
High contrast, digital, graphic Color, visible in complete darkness.
Resolution:
Display 1024 H x 768 W pixels, Touch Panel 256 H x 256 W
Dedicated Function Event Touch Screen Controls:
For Amplitude, Time Display and Capture.
Vertical Display:
20, 100, 500, 2000, 10,000, 50 K, and 100 KµV display modes.
Event Capture:
Enable/disable capture mode indicator on touch screen.
Time Scale:
25 ms, 50 ms, 100 ms or 20 S display modes.

Stimulator 1 and 2
Stimulus Type Constant:
Constant Current
0-30 mA, a minimum of 80 V compliance 80 volts (80 V- 10 %) tested into a 10 K load)
100 - 10 KOhms (0 - 3 mA): Compliance 10 V (3.5 - 30 mA): Compliance 60 V
Stimulus Range
Load Impedance Range: As long as the load impedance X determination current is less or equal the compliance voltage
Stimulus Control:
Digitally controlled, range – dependent adjustment increments of 0.01, 0.05, 0.1, .5 and 1.0 mA
± .01 mA (or ± 10% of reading at 1K load) over Stimulus Range.
Stimulus Output Accuracy:
Graduated Touch Screen Control with display of command current and delivered current.
± .02 mA (or ± 10% of reading at 1K load) over Stimulus Range.
Stimulus Adjustment:
32 mA Type F; 250 V 5 x 20 mm (It must be Xomed #8253075, other similar fuses may not give the same degree of protection. Order 8253075 Fuse Kit for replacements.
Internal Fuse
Internal Fuse
Audio Output
Transducers:
Built-in 3.0 x 3.0 inch speaker Piezoelectric Sounder
Baseline Audio Sound Level
.63 ± 4 dB SPL C Weighted (30.5 cm)
Change in Baseline with added Channels
< ± 4 dB SPL C Weighted (30.5 cm)
Change in Baseline due to EMG and Tones
> + 20 dB SPL C Weighted (30.5 cm)
Technical Specifications

Max Audio Sound Level
EMG & Event Tone Signals:
 Volume Preset and Limiter:
 "Current Delivered" Tone Signals:
 Power-Down / Power-up Tone
 Touch Screen Key Click:
 Connection:
 Headphones:
 Headphone Output:

Audio Accessories Verified Compatible
 Headphones:
 Audio Amplifier:
 Audio Extension Cable:

I/O - Printer Output / Disk Drive Output
 Printer Interface:
 Connection:

Printer Verified Compatible
 Printer:
 Printer Power Supply

Data Output
 USB Compact Flash Memory

Video Output
 Interface:
 Connection:

Electrical
 Input Voltage
 Frequency
 Total Power Consumption:
 Auxiliary AC output (For Use With Approved NIM*
 Accessories Only):
 Line Isolation:
 Internal Fuse
 Patient Connections
 Patient Isolation
 Patient Connection Capacitance

Classifications:
 Type of Protection against electrical shock:
 Degree of protection against electrical shock:
 Increas of water, dust, or solids IEC 60529
 Use with flammable anesthetics mixtures, with air, oxygen,
 and nitrous oxide:

102 ± 4 dB SPL C Weighted (30.5 cm)
Continuous processed EMG and/or activity-level dependent event tones for
each channel.
Volume Power Up Pre-set Default and a Low Volume Limiter. Volume Presets
for Main, Tones, Voices, and EMG Volumes
Signal occurs when 80% of set current is measured over range of 0.05-30 mA.
Constant Power-up / Decaying Power-down Tone
Selectable ON/OFF
RCA Phone Jack
Impedance @1KHz is 25 Ω or greater SPL 107 ± 4 dB. Plug 3.5 mm Stereo
Nickel Plated
60 to 83 dB ± 6 dB SPL C- Weighted

Radio Shack Headphones P/N 33-1223 (Sennheiser P/N HD497)
Radio Shack Volume Amplifier P/N 33-1109 Radio Shack
Radio Shack 16' Shielded Audio cable P/N 42-2493 Radio Shack

Hewlett-Packard DeskJet PCL5 compatible
USB (2)

NIM* Printer Medical Grade Power Supply (Medtronic 8253025)

SanDisk Brand Cruzer Mini SanDisk Brand Cruzer Micro

XVGA Compatible, 1024 x 768 resolution
15-pin HD

100 V, 120 V
50/60 Hz
62 W Nominal <78 W Peak (Total 33 W Console, 10 W Printer, and 19 W
Mini-Screen)
NIM* Printer Power Supply (#) 150 VA Max.

4000 V Peak-to-Peak 60Hz dielectric withstand from Line Connections to
Signal Ground
5 x 20 mm, 2.5 Amp, 250V, Time-Ilag, Low breaking capacity, Xomed Part #
11270068. Order 8253075 Fuse Kit for replacements.
All patient probes and electrodes are Type BF applied parts
90-264 Vrms 50-60 Hz < 100µA (Mains on applied part N.C.)
100 pF +/- 30 % @ 1 kHz (All patient probes and electrodes combined to Safety
GND)

Type BF applied parts

Not suitable for use in the presence of flammable anesthetic mixtures.
Block Diagram for NIM-Neuro 3.0, NIM-Response 3.0, and NIM-Pulse 3.0

- Speaker
- Audio Amplifier / Accessories
- Digital I/O
- EMG Input
- Digital I/O
- Stim 1 Out
- Digital I/O
- Stim 2 Out
- Touch Screen
- Display
- Backlight
- EMG Input Type BF
- Stim 1 Out Type BF
- Stim 2 Out Type BF
- Type F Applied Part
- Enclosure/Basic insulation
- Protective Earth
- Intermediate Circuits
- Aux Power Outlet
- Flexible cord with Mains Plug
- Protective Earth
- Switch
- Fuses
- Reinforced insulation between the primary and secondary of the power supply
- Metal Shield Parts with Protective Earth
- Power: Primary
- Power: Secondary
- Power Distribution
- Single Board Computer
- PC/104 Plus Bus
- DSP
- Video Card (Neuro only)
- PC/104 Plus Bus
- Rear Panel I/O
- USB1/USB2
- Ethernet
- Video Output
- Output to Miniscreen
- USB3
- Line Out
- Headphone
- Handswitch
- Mute Probe
- Audio Amplifier / Accessories
- Touch Screen/Knob Control
- Backlight
- Display
- Rev A 8-25-2009